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Given their free-ranging habits, feral swine could serve as reservoirs or spatially dynamic ‘mixing

vessels’ for influenza A virus (IAV). To better understand virus shedding patterns and antibody

response dynamics in the context of IAV surveillance amongst feral swine, we used IAV of feral

swine origin to perform infection experiments. The virus was highly infectious and transmissible

in feral swine, and virus shedding patterns and antibody response dynamics were similar to

those in domestic swine. In the virus-inoculated and sentinel groups, virus shedding lasted #6

and #9 days, respectively. Antibody titres in inoculated swine peaked at 1 : 840 on day 11

post-inoculation (p.i.), remained there until 21 days p.i. and dropped to ,1 : 220 at 42 days p.i.

Genomic sequencing identified changes in wildtype (WT) viruses and isolates from sentinel

swine, most notably an amino acid divergence in nucleoprotein position 473. Using data from

cell culture as a benchmark, sensitivity and specificity of a matrix gene-based quantitative

reverse transcription-PCR method using nasal swab samples for detection of IAV in feral swine

were 78.9 and 78.1 %, respectively. Using data from haemagglutination inhibition assays as a

benchmark, sensitivity and specificity of an ELISA for detection of IAV-specific antibody were

95.4 and 95.0 %, respectively. Serological surveillance from 2009 to 2014 showed that

,7.58 % of feral swine in the USA were positive for IAV. Our findings confirm the susceptibility

of IAV infection and the high transmission ability of IAV amongst feral swine, and also suggest

the need for continued surveillance of IAVs in feral swine populations.
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INTRODUCTION

Influenza viruses (family Orthomyxoviridae) are classified

into types A, B and C (Alexander & Brown, 2000; Mahy,

1997). Influenza A virus (IAV), an enveloped RNA virus,

contains eight negative-sense ssRNA genome segments.

The IAVs can cause seasonal epidemics, affecting one or

many countries, as well as pandemics. IAVs have been

recovered from at least 105 wild bird species of 26 different

families (Olsen et al., 2006a), and species living in wetland

and aquatic environments (e.g. Anseriformes and Chara-

driiformes spp.) constitute the major natural IAV reservoir

(Webster et al., 1992). However, in addition to circulating

amongst avian species, IAVs also circulate amongst a wide
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spectrum of other host species, including humans, swine,
equines, canines and marine mammals (Keawcharoen
et al., 2004; Peiris et al., 2007; Sun et al., 2011; Webster
et al., 1992).

Amongst the natural hosts of IAVs, swine have been shown
to be susceptible to many IAV subtypes (Kida et al., 1994).
In domestic swine, IAVs can cause respiratory diseases
characterized by fever, lethargy, sneezing, coughing, diffi-
culty breathing and decreased appetite, which usually lead
to weight loss. For the past decade, IAV subtypes H1N1,
H1N2 and H3N2 have been the predominant strains circu-
lating amongst the domestic swine population in the USA
(Vincent et al., 2008). Antigenic characterization revealed
that the circulating H1N1 IAVs formed four genetic clusters:
swH1a (classic H1N1), swH1b (reassortant H1N1-like),
swH1c (H1N2-like) and swH1d (human-like H1). Viruses
within cluster swH1d can be further classified into two
subclusters: swH1d1 (human-like H1N2) and swH1d2
(human-like H1N1) (Vincent et al., 2006, 2009). The 2009
pandemic influenza A(H1N1)pdm09 virus is a classic
subtype H1N1-origin swine virus, but it differs genetically
from the four genetic clusters identified from the USA
(Lorusso et al., 2011). Antigenic characterization showed
variations amongst viruses in the subtype H1N1 clusters
(Lorusso et al., 2011).

Similar to H1 IAVs, the H3N2 subtypes in the US swine
population are also genetically and antigenically diverse.
Four genetic clusters of H3N2 subtype IAVs (clusters
I–IV) have been identified (Hause et al., 2010; Olsen
et al., 2006b; Richt et al., 2003). Cluster IV, which has
become predominant amongst the US swine population,
has further evolved into two antigenic clusters: H3N2-a
and H3N2-b (Feng et al., 2014). Many of these H3N2
genetic clusters are currently co-circulating in swine popu-
lations and frequent reassortments of these IAVs have
occurred. In 2011, a predominant H3N2 genotype contain-
ing a matrix gene from influenza A(H1N1)pdm09 virus
led to the emergence of an H3N2 variant virus that
caused disease in humans (Bowman et al., 2012; Nelson
et al., 2012; Shu et al., 2012); this variant IAV is antigeni-
cally similar to H3N2-b viruses (Feng et al., 2014).

In addition to the prevalent H1 and H3 IAVs, other
haemagglutinin subtype viruses, such as H1N1, H4N6,
H5N1, H6N6 and H9N2, have been transiently detected
in swine (Choi et al., 2005; Guan et al., 1996; Olsen,
2002; Peiris et al., 2001; Zhang et al., 2011). As swine
have the avian-like NeuAc-2,3-a-Gal receptors and the
human-like NeuAc-2,6-a-Gal receptors in their respiratory
tracts, they have been proposed as a ‘mixing vessel’ for the
generation of IAV reassortants (Scholtissek, 1994).

In the USA, there are *5 million feral swine across w40
states and the number is increasing (Bevins et al., 2014;
Fogarty, 2007). Contacts between feral and domestic
swine provide the opportunities for bi-directional trans-
mission for pathogens such as IAVs (Wyckoff et al.,
2009). Also, because feral swine and wild birds are

sympatric throughout their ranges, direct contact (e.g.
feral swine scavenging and predation on wild birds) and
indirect contact (e.g. use of common resources like water
and forage) provide the opportunity for virus transmission
amongst these species (Bevins et al., 2014). The free-ranging
nature of feral swine and their direct and indirect inter-
actions with other IAV hosts position them as ideal,
spatially dynamic ‘mixing vessels’. Previous studies have
recovered subtype H3N2 and influenza A(H1N1)pdm09
viruses from feral swine (Clavijo et al., 2012). Results
from serological surveillance during October 2011–Septem-
ber 2012 documented that 9.15 % of serum samples from
feral swine in 31 states were positive for IAV exposure, of
which w60 % were positive for H3 subtype viruses (Feng
et al., 2014). These findings indicate that IAVs are widely
present in feral swine, and IAVs circulating amongst feral
swine are antigenically and genetically similar to those cir-
culating in domestic swine.

Surveillance for IAV infection is more challenging in feral
swine than in domestic swine because multiple haemagglu-
tinin subtypes can be present in feral swine and little is
known about IAV infection dynamics in these animals.
Current methods for IAV diagnosis and surveillance in
feral swine were adapted from protocols designed for use
with domestic swine or poultry. To improve these methods
and to evaluate protocols for IAV diagnosis and surveil-
lance in feral swine, knowledge of virus shedding patterns
and antibody response dynamics is needed. Furthermore,
it is known that feral swine can acquire IAV from domestic
swine (Bevins et al., 2014; Fogarty, 2007), but it is not
clear whether IAVs can be easily transmitted amongst
feral swine.

To better understand IAV shedding patterns, antibody
response dynamics and the potential for IAV transmission
amongst feral swine, we performed infection and reinfec-
tion experiments using a subtype H3N2 IAV of feral
swine origin. Other goals were to investigate whether
feral swine with low IAV antibody titres could infect and
shed homologous viruses, and to evaluate the protocol
for influenza diagnosis and surveillance in feral swine.

RESULTS

H3N2 IAV is highly infectious and transmissible in
feral swine

We determined virus shedding patterns and antibody
response dynamics in 12 feral swine by performing infection
experiments with a subtype H3N2 IAV of feral swine origin
that was highly infectious and transmissible amongst these
animals. The swine were divided into treatment (n58) and
sentinel (n54) groups, and housed at one or two animals
per pen (a total of six adjoining pens for the treatment
group and three for the sentinel group); pens for treatment
and sentinel groups were 1.2 m apart (Fig. 1). Swine in the
treatment group began shedding virus 1 day post-inoculation
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(p.i.) and continued to shed virus until 6 days p.i. Virus
titres in nasal wash and nasal swab samples from the treat-
ment group ranged from 100.575 to 101.878 TCID50 ml21

and peaked at 5 days p.i. In the four sentinel swine,
virus shedding was detectable 1 day post-exposure (p.e.)
to the IAV-inoculated swine. Virus titres in sentinel
swine peaked at 8 days p.e. (Fig. 2) and shedding was sus-
tained for up to 9 days (mean titres 101.532–104.673 TCID50

ml21). No obvious clinical signs of infection (e.g. cough,
fever, weight loss) were observed in the inoculated or sen-
tinel swine. To investigate whether feral swine with low
IAV antibody titres could infect and shed homologous
viruses, we reinoculated swine in the treatment group
and inoculated swine in the sentinel group with subtype
H3N2 IAV on day 103 p.i. However, the antibody in
the treatment swine quickly rose and we were unable to
determine virus titres in samples from the treatment
group.

Antibody response dynamics in feral swine after
inoculation with H3N2 IAV

Feral swine in the treatment group seroconverted at 8 days
p.i.; the mean haemagglutination inhibition (HI) titre was
1 : 450 (Fig. 3). The mean HI titres peaked at 1 : 840 at
11 days p.i. and remained at that level until 21 days p.i.
before gradually declining to v1 : 220 at 42 days p.i.; titres
then continued to decline to 1 : 130 at 93 days p.i. Before
swine in the treatment group were reinoculated with H3N2
IAV at 103 days p.i., the mean HI titre was 1 : 120.

Feral swine in the sentinel group seroconverted (mean HI
titre 1 : 60) at 11 days p.e.; HI titres in these swine peaked
at 1 : 960 at 21 days p.e. and gradually declined to 1 : 373

at 42 days p.e. Before swine in the sentinel group were inocu-
lated with H3N2 IAV at 103 days p.e., the mean HI titre was

1 : 213.

Infection group (n=8)

Sentinel group (n=4)

Swine 1 Swine 5

Swine 9

Swine 4 Swine 2 Swine 3 Swine 6

Swine 11

Swine 12

Swine 7

Swine 8

Sentinel swine

Infected swine

Swine 10

Vacant

Fig. 1. Physical layout of pens housing swine in a study of the virus shedding patterns and antibody response dynamics during
IAV infection in feral swine. An empty pen was located between six pens housing a total of eight swine in the treatment group
and three pens housing a total of four swine in the sentinel group. Swine in the treatment group were intranasally inoculated
twice (days 0 and 103) with 106 TCID50 influenza A/swine/Texas/A01104013/2012(H3N2) virus; swine in the sentinel group
were intranasally inoculated once (day 103) with 106 TCID50 influenza A/swine/Texas/A01104013/2012(H3N2) virus.
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Fig. 2. Mean titres of influenza viruses recovered from nasal wash
or nasal swab samples of feral swine following nasal inoculation of
influenza virus. Swine in the infection group were inoculated with
106 TCID50 influenza A/swine/Texas/A01104013/2012(H3N2)
virus (in 1 ml volume). Swine in the sentinel group were inoculated
with 1 ml PBS. Virus titres were measured in nasal wash or swab
fluids collected on indicated days following titration in Madin–
Darby canine kidney (MDCK) cells; ending titres are expressed as
mean¡SD. The inset table shows the number of swine that shed
virus on the various days after virus inoculation or exposure.
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After swine in the treatment group were reinoculated and
the sentinel group was inoculated with IAV, the antibody
titre increased in both groups of swine. At 113 days p.i.

(10 days after reinoculation), HI titres in the treatment
group swine increased to 1 : 240, whereas titres in the sen-
tinel swine group increased to 1 : 640 (Fig. 3).

During 21–113 days p.i./p.e., antibody titres in sentinel
swine were significantly higher (Pv0.001) than those in

inoculated swine.

Amino acid polymorphisms in IAVs recovered
from experimentally infected feral swine

To explore the mechanism for the discrepancy in antibody
levels between sentinel and treated swine, we recovered
viruses from the sentinel swine and compared them with
the WT virus that was used to inoculate swine in the treat-

ment group. The growth kinetics study demonstrated that,
compared with virus isolates from the sentinel swine, WT
virus replicated better in Madin–Darby canine kidney
(MDCK) cells (Fig. 4). Titres of WT virus were 0.5- to

1.5-fold higher (Pv0.05) than titres for sentinel swine
test isolate P10D8 at 24, 48 and 72 h p.i., and for sentinel
swine test isolate P5D8 at 24 h p.i. Further sequencing of
these isolates identified amino acid and nucleic acid poly-

morphisms in PB2, PB1, PA, HA, NP, NA, M1, and NS1,
(Tables 1, S1 and S2, available in the online Supplementary
Material). Overall, these polymorphisms suggested that the

original cell-adapted virus inoculum adapted within the
infected swine and that this adaptation may underlie the
increase in HI titre levels.

Sensitivity of nasal swab specimens for
diagnosing IAV infection in feral swine

To assess the value of a matrix gene-based quantitative
reverse transcription (qRT)-PCR method using nasal
swab samples for determining IAV infection, we compared
qRT-PCR and TCID50 results for 141 swab samples col-
lected 1–14 days p.i. (Tables 2 and 3). The qRT-PCR results
were positive for 55 samples and cell cultures were positive
for 41 samples; 32 of the samples had positive results from
both the qRT-PCR and cell culture methods. The sensi-
tivity and specificity of the qRT-PCR method using nasal
swab samples for diagnosis of IAV infection in feral swine
was 78.90 and 78.05 %, respectively.

Evaluation of current protocols for using an AI
MultiS-Screen Ab Test kit to detect IAV in feral
swine

To evaluate current protocols for IAV surveillance in the
feral swine population, we used an AI MultiS-Screen Ab
Test kit (see Methods) to determine the receiver operating
characteristic curve. Results showed that when the thres-
hold of the sample-to-negative control (S/N) ratio
increased, the sensitivity of the AI MultiS-Screen Ab Test
kit also increased, but specificity decreased (Fig. 5).
When the S/N threshold was 0.50, sensitivity and specificity
of the AI MultiS-Screen Ab assay were 81.44 and 100 %,
respectively. When the S/N threshold was increased to
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Fig. 4. Growth kinetics of influenza virus isolates and WT virus
characterized in MDCK cells. MDCK cells were infected with indi-
vidual viruses at m.o.i. 0.001. Virus titres were measured in
MDCK cells; ending titres are expressed as mean¡SD from three
independent experiments. *WT virus is significantly higher than
that of isolate P10D8 (P,0.05); **WT virus is significantly higher
than that of isolate P5D8 (P,0.05).
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Fig. 3. Mean HI titres of IAVs in serum samples collected from feral
swine following nasal inoculation of influenza virus. Swine in the
infection group were inoculated twice (days 0 and 103) with
106 TCID50 influenza A/swine/Texas/A01104013/2012(H3N2)
virus (in 1 ml volume). Swine in the sentinel group were inoculated
once with 1 ml PBS (day 0) and once (day 103) with 106 TCID50

influenza A/swine/Texas/A01104013/2012(H3N2) virus (in 1 ml
volume). HI titres were measured in serum samples obtained on indi-
cated days following inoculation. HI assays were conducted by
using 0.5 % turkey red blood cells. Titres are expressed as
mean¡SD from the results in eight swine in the treatment group or
four swine in sentinel group.
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0.681 (i.e. the value currently used by the US Department

of Agriculture as the standard for testing feral swine

samples for IAV exposure), sensitivity and specificity of

the AI MultiS-Screen Ab assay increased to 95.36 and

95.00 %, respectively. If specificity and sensitivity were

combined, an S/N value of 0.681 would be reasonable for

the diagnosis of IAV in feral swine. By applying the S/N

threshold of 0.681, we determined that 7.58 % (585) of

7714 serum samples collected from feral swine during

2009–2014 were positive for IAV (US Department of

Agriculture, unpublished data); this finding confirms the

prevalence of IAV infection in feral swine. Our results

also demonstrated that the 0.681 threshold currently used
in field surveillance programs is effective in identifying
IAV-positive serum samples from feral swine.

DISCUSSION

Under laboratory conditions, enzootic swine-origin subtype
H1N1, H3N2 and H1N2 IAVs have been shown to replicate
in the respiratory tracts of domestic swine, and virus shed-
ding lasts for 5–6 days (De Vleeschauwer et al., 2009a; Van
Reeth et al., 2009). However, infection with avian-origin
subtype H1N1, H4N1, H5N1 and H7N1 IAVs results

Table 1. Amino acid polymorphisms amongst sequences of WT virus used for inoculation and amongst virus isolates recovered
from sentinel swine in a study of the dynamics of virus shedding and antibody responses during IAV infection in feral swine

Gene Position* Amino acidD (by virusd)

P1D8 P5D8 P10D8 WT

HA 443 L/H (137/65) L L L

NA 346 G G/S (279/211) G G

PB1 59 T T T/K (2041/575) T

NP 473 S S S/G (2223/232) S/G (459/275)

NS1 157 V V I/V (803/6400) I/V (1747/1605)

*Numbering of the residues was from the first amino acid in the methionine start site of each gene of the influenza viruses.

DNumbers in parentheses represent number of supporting reads.

dIsolates P1D8, P5D8 and P10D8 were isolated from sentinel swine numbers 1, 5 and 10, respectively, 8 days after swine in the treatment group

were infected. WT virus was influenza strain A/swine/Texas/A01104013/2012(H3N2) that was used to inoculate swine in the treatment group.

Table 2. Results of qRT-PCR of nasal swab samples from feral swine after inoculation with influenza A/swine/Texas/
A01104013/2012(H3N2) virus and from feral swine after exposure to infected swine

NC, no samples were collected.

Group, swine no.* Ct value (day p.i./p.e.)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Inoculation

2 39.5 29.2 22.1 26.4 22.3 27.7 28.8 34.1 38.2 39.5 0 0 0 0 0

3 0 33.5 NC 24.4 NC 30.2 NC 37.1 NC 0 NC 0 NC 0 NC

4 0 34.1 29.2 26.0 28.3 27.2 28.8 33.8 36.8 39.2 0 33.3 0 37.1 34.1

6 0 35.5 NC 30.2 NC 26.9 NC 32.7 NC 0 NC 0 NC 0 NC

7 0 36.0 NC 30.0 NC 28.3 NC 40.0 NC 0 NC 0 NC 0 NC

8 0 0 NC 31.1 NC 32.8 NC 38.6 NC 0 NC 0 NC 0 NC

11 0 36.9 30.4 27.7 28.6 28.5 33.9 35.6 40.6 0 0 0 0 0 0

12 0 34.3 29.2 28.4 28.4 29.0 31.1 34.4 36.6 0 0 0 0 0 0

Sentinel

1 0 0 0 0 0 39.5 40.0 29.8 26.0 26.2 30.3 35.5 37.2 0 0

5 0 0 0 0 33.3 24.1 26.3 25.9 23.9 28.1 31.8 34.9 35.5 39.1 37.9

9 0 0 NC 0 NC 37.8 NC 34.4 NC 32.8 NC 39.5 NC 0 NC

10 0 40.9 NC 0 NC 0 NC 36.8 NC 33.1 NC 32.9 NC 33.5 NC

*A feral swine index was used to randomly assign swine to the treatment or sentinel group. Swine in both groups were housed in pens in the same

barn (Fig. 1). The following swine were housed together: swine 7 and 8, swine 9 and 10, and swine 11 and 12.

Responses to IAV infection in feral swine
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in virus shedding for 3–6 days (De Vleeschauwer et al.,
2009b). Furthermore, influenza A(H1N1)pdm09 virus
infection in domestic swine can lead to virus shedding for
up to 10 days (Bragstad et al., 2013). Thus, the duration of
virus shedding in IAV-infected domestic swine depends on
the virus subtype and strain. In this study, we showed that
feral swine infected with the H3N2 IAV of feral swine
origin can shed virus for up to 10 days.

After infection, no obvious clinical signs were observed in
feral swine of either group; domestic swine infected with
IAVs show only mild respiratory distress or, sometimes,
no clinical signs (Bragstad et al., 2013; Ferrari et al.,
2010). The virus titration results suggested low shedding
in both treatment and sentinel swine. However, the high
HI titres suggested that both groups were successfully
infected with H3N2 virus. It should be noted that this
H3N2 IAV replicated poorly in MDCK cells and thus
virus titration in MDCK cells could generate biases in the
virus shedding data.

Results showed that virus titres in the sentinel group were
higher than those in the treatment group. This finding is
consistent with results from another swine experiment
with influenza strain A/swine/Flanders/1/98(H3N2) (De
Vleeschauwer et al., 2009b). In that study, nasal shedding
in inoculated pigs peaked at 1 day p.i. [titre of *105 EID50

(100 mg nasal secretions)–1, where EID50 is the 50 % egg
infectious dose] and shedding continued for*7 days; how-
ever, nasal shedding in contact pigs peaked at 6 days p.e.
[titre of 106 EID50 (100 mg nasal secretions)–1]. Other
reports showed evidence of higher replication capability

Table 3. Virus titration results for nasal wash and nasal swab samples from feral swine after inoculation with influenza A/swine/
Texas/A01104013/2012(H3N2) virus and from feral swine after exposure to infected swine

Group, swine no.* Titre [log10(TCID50 ml21)]D (day p.i./p.e.)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Inoculation

2 2.199 2.199 0.699 3.699 2.199 2.199 0 0 0 0 0 0 0 0

3 1.699 2.366 0.699 0 3.032 0 0 0 0 0 0 0 0 0

4 0 0.699 0.699 0.699 3.199 0.699 0 0 0 0 0 0 0 0

6 0.699 0.699 0 0 2.199 0 0 0 0 0 0 0 0 0

7 0 0.699 0 0 2.366 0 0 0 0 0 0 0 0 0

8 0 0 0 2.366 0 0 0 0 0 0 0 0 0 0

11 0 0 2.366 0 0 0 0 0 0 0 0 0 0 0

12 0 2.032 1.699 1.699 2.032 0 0 0 0 0 0 0 0 0

Sentinel

1 0 0 0 0 0 0 2.93 5.199 4.032 2.866 0 0 0 0

5 1.699 0 2.032 1.98 4.032 4.032 3.199 5.032 2.468 0 0 0 0 0

9 0 0 0 0 0 0 0 4.199 0 0 0 0 0 0

10 0 0 0 0 0 0 0 4.262 2.468 5.699 0 0 0 0

*A feral swine index was used to randomly assign swine to the treatment group or the sentinel group. Swine in the treatment group and the sentinel

group were housed in pens in the same barn (Fig. 1). The following swine were housed together: swine 7 and 8, swine 9 and 10, and swine 11 and 12.

DVirus titres were measured in MDCK cells; the titres in italics were for nasal wash samples, and the others for nasal swab samples.
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and/or pathogenesis by IAV after passage in a host,
suggesting possible adaptation of the viruses to host species
(Mase et al., 2006; Wei et al., 2014). Thus, it is likely that
before being transmitted from treatment group swine to sen-
tinel swine, the WT viruses acquired improved replication
efficiency and infection capability during passage in the
treatment group swine. Of note, the viruses inoculated into
the treatment group swine had been passaged twice in
MDCK cells. Furthermore, the data obtained from genomic
sequencing identified a few changes between the isolates
recovered from the sentinel swine and theWT viruses inocu-
lated into the treatment swine: changes were noted in non-
protein-coding sequences, and in amino acid and nucleotide
sequences in the protein-coding sequences (Tables 1, S1 and
S2). Notably, there was amino acid divergence in position
473 in the nucleoprotein. Amino acid at position 473 (in
the peptide of 473–481) in the nucleoprotein was relatively
conserved in subtype H1N1 and H3N2 IAVs, and was
reported to stimulate the host to produce IFN-c (Wahl
et al., 2009). These findings are of interest because the
non-coding regions and some coding regions of genome seg-
ments affect viral RNA synthesis and packing (Liang et al.,
2005; Muster et al., 1991; Ng et al., 2008; Sun et al., 2015;
Watanabe et al., 2003; Zheng et al., 1996). Further exper-
iments are needed to validate the roles of sequence changes
in the discrepancy seen in patterns of virus shedding and
antibody response dynamics between the swine in the treat-
ment and sentinel groups.

It is likely that seroconversion of sentinel swine occurred
after they were exposed to contaminated fomites or aeroso-
lized virus disseminated through the ventilation system.
This supposition is supported by the fact that one sentinel
swine began shedding virus at 1 day p.e., even though virus
detection by qRT-PCR was negative for this swine until
5 days p.e. (Table 2). Although it is possible that infectious
aerosols (e.g. those created during pen washing) or contact
with infectious fomites could have led to virus transmission
amongst swine (Allerson et al., 2013; Tellier, 2006), the sen-
tinel and treatment groups were separated by 1.2 m, and
our study protocol included procedures to avoid the unin-
tended transmission of virus as a result of routine cleaning
and feeding (e.g. sentinel group pens were cleaned before
treatment group pens and the sentinel group was fed
before the treatment group). Regardless, the findings in
this study demonstrate that subtype H3N2 IAV can be
easily transmitted amongst feral swine.

Isolation of enzootic subtype H3N2 and H1N1 IAVs from
feral swine suggested that there have been multiple intro-
ductions of IAVs from domestic swine to feral swine
(Bevins et al., 2014; Fogarty, 2007). It would be of interest
to know whether these introduced H3N2 IAVs can be
maintained in the feral swine population. In domestic
swine, subtype H3N2 IAV can persist in the population
through chronic infection of swine or periodic reintroduc-
tion of the virus (Kyriakis et al., 2013; Wallace, 1979).
As feral swine can live *8 years (versus v1 year for most
domestic swine) and are free-ranging (unlike domestic

swine), they have more opportunities to be exposed to
other feral swine, domestic swine and ponds contaminated
by avian influenza-infected wild birds, including migratory
waterfowl. Our findings suggest that H3N2 virus of feral
swine origin can be transmitted easily amongst feral
swine. Thus, feral swine could facilitate antigenic drift or
shift, which could lead to the generation of novel IAVs,
further complicating our ability to elucidate the complex
ecology of IAVs.

Swine in the treatment group seroconverted (HI titres
i1 : 40) at 8 days p.i. and swine in the sentinel group ser-
oconverted 3 days later. These results were similar to those
in a study of domestic swine experimentally infected with
H1 IAV, in which seroconversion occurred at 7–8 days
p.i. (Lee et al., 1995; Panyasing et al., 2013). In addition,
another study showed that antibody titres in IAV-
inoculated domestic swine were lower than those in
domestic swine infected through contact transmission
(De Vleeschauwer et al., 2009b). Our finding that mean
HI titres at different time points were higher in the sentinel
group than in the treatment group were also consistent
with findings in these previous studies. Unfortunately, we
were unable to detect viruses in nasal wash samples from
swine that were reinoculated with H3N2 IAV at 103 days
p.i. because of a spike in HI antibody titre levels.

Although next-generation sequencing detected a few amino
acid polymorphisms across the genomes of WT virus and
virus isolates recovered from sentinel swine, it is still not
clear whether these polymorphisms led to the discrepancy
in antibody levels between sentinel and treated swine.
Further experiments using IAV reassortants with a specific
mutation are needed to identify any specific polymorph-
isms responsible for such a difference.

A previous study in feral swine documented a very low rate
of virus recovery: amongst 1983 nasal swab samples from
feral swine, nine were matrix gene qRT-PCR-positive and
only one IAV strain was isolated (Feng et al., 2014). Our
study demonstrated that nasal swab samples from feral
swine provide adequate virus for the detection of IAV.
The low rates of IAV detection and isolation in the pre-
vious study (Feng et al., 2014) were probably due to the
short duration of virus shedding. Nasal swab samples
from younger, immunologically naive feral swine would
more likely to lead to a higher qRT-PCR detection and
virus isolation success rate.

Comparison of virus titres for swine with only nasal swab
samples and those with alternating nasal wash and nasal
swab samples demonstrated that the virus titres in the
former group were slightly higher than those in the latter
group (Table 3). It is interesting that, once virus shedding
was detected, the swine with only swab samples had con-
sistent shedding patterns, whereas those with alternating
nasal wash and nasal swab samples did not. This might
have occurred because nasal washes likely cleared some
viral particles from the nasal cavity.
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Serological analyses demonstrated that ELISAs are less sen-
sitive than HI assays for the detection of IAV in feral swine.
However, by optimizing the S/N threshold, both the sensi-
tivity and specificity of ELISAs can be improved to w95 %
with a S/N threshold of 0.681. With this threshold, the ser-
ological surveillance from 2009 to 2014 showed that
*7.58 % of feral swine in the USA were positive for
IAV, confirming the prevalence of IAV infection in feral
swine. These findings suggest the need for continued sur-
veillance to monitor the distribution, and the genomic
and antigenic diversities of IAVs in feral swine populations.

METHODS

Virus and cells. We used influenza A/swine/Texas/A01104013/
2012(H3N2) virus, a WT strain of feral swine origin (Feng et al.,
2014), to infect feral swine. MDCK cells (American Type Culture
Collection) were maintained at 37 uC with 5 % CO2 in Dulbecco’s
modified Eagle’s medium (Gibco-BRL) supplemented with 10 % FBS
(Atlanta Biologicals) and penicillin/streptomycin (Gibco-BRL). Virus
amplification was performed in MDCK cells at 37 uC with 5 % CO2

in Opti-MEM I Reduced Serum Medium (Life Technologies) sup-
plemented with TPCK (L-1-tosylamido-2-phenylethyl chloromethyl
ketone)-treated trypsin (1.5 mg ml21).

RNA extraction, PCR, qRT-PCR and genomic sequencing. Viral
RNA was extracted by using an RNeasy Plus Mini kit (Qiagen). The
full-length cDNA for eight influenza gene segments was amplified by
using SuperScript One-Step RT-PCR (Invitrogen) with previously
described primers (Hoffmann et al., 2001; Zhou et al., 2009). To
address the possibility of mutations changing the growth phenotype
of viruses, the full genome of isolates from sentinel swine and WT
virus used for inoculation were amplified by using a method descri-
bed previously (Zhou et al., 2009). Amplified viral DNA products
were quantified by using a High Sensitivity DNA kit on an Agilent
2100 Bioanalyzer (Agilent Technologies). An equal amount of each
sample was used with an Illumina Nextera DNA Sample Preparation
kit (Illumina) to prepare a sequencing library. Library samples were
further quantified, normalized and then pooled together. Pooled
library samples were sequenced by using a MiSeq Reagent kit version
2 (500 cycles) on a MiSeq sequencer (Illumina) according to the
sequencing protocol suggested by the manufacturer.

Feral swine. A total of 12 feral swine (body weight 16–22 kg) were
trapped in a rural area of Starkville, MS, USA, by using corral traps
constructed of 4.9|1.5 m utility panels with 10.2 cm2 mesh and steel
T-posts. Animals were transported in an air-conditioned, enclosed
trailer to the Wildlife Services, National Wildlife Research Center,
Mississippi Field Station in Mississippi State, MS, USA. The captured
swine were quarantined for 1 week, and tested for exposure to bru-
cellosis, pseudorabies and IAV by ELISA; all test results were negative.
The swine were then housed in 1.2|2.7 m pens with solid concrete
floors in an enclosed, air-conditioned building (Fig. 1). Once a day,
the swine were fed a 16 % crude protein commercial swine ration
equal to 4 % of their body weight.

Animal experiments. The 12 feral swine were each assigned to one
of two groups: a treatment group (n58) or a sentinel group (n54).
Animals in the treatment group were housed in six adjoining pens
(one or two swine per pen); swine in the sentinel group were housed
in three adjoining pens (one or two swine per pen), separated from
those in the treatment group by 1.2 m (Fig. 1).

Prior to virus inoculation and sampling, animals were anaesthetized
by using a syringe pole to inject TKX (4.4 mg Telazol kg21, 2.2 mg

ketamine kg21 and 2.2 mg xylazine kg21) (Ko et al., 1993) at 0.044 ml
(kg body weight)21 behind the ear, in the loin or in the ham. Animals
in the treatment group were intranasally inoculated with 106 TCID50

influenza A/swine/Texas/A01104013/2012(H3N2) in 1 ml volume
(Fig. 1). To investigate whether feral swine with low IAV antibody
titres could infect and shed homologous viruses, we reinoculated
swine in the treatment group at 103 days p.i. and we intranasally
inoculated swine in the sentinel group with 106 TCID50 (in 1 ml
volume) of the same virus. We originally planned to administer these
inoculations at 90 days p.i., but at that time, the US government had
shut down all non-essential government work. Thus, we had to
postpone the reinfection experiments until 103 days p.i., when we
were permitted to continue our experimental activities.

Nasal swab samples were collected from half of the swine (four treat-
ment and two sentinel swine) daily from 1 to 14 days p.i. and from 104
to 113 days p.i., and stored in 15 ml tubes with 2 ml PBS. In the
remaining swine (four treatment and two sentinel swine), nasal swab or
nasal wash samples were collected on alternating days from 1 to 14 days
p.i. and from 104 to 113 days p.i. Nasal washes were performed in
both nostrils by using 2 ml PBS. qRT-PCR was used to determine
virus loads in nasal swab samples, and viruses in both nasal wash
and nasal swab samples were titrated by TCID50. Blood samples (5 ml)
were obtained from swine for serological assays at 0, 2, 5, 8, 11, 14, 17,
21, 28, 35, 42, 49, 56, 63, 70, 93, 103, 104, 107, 110, and 113 days p.i.

Two swine per day (one treatment and one sentinel) were euthanized
on 104–106 days p.i. and necropsies were performed. Euthanasia was
performed by administration of barbiturates solution [1 ml (4.5 kg
body weight)–1] in fully anaesthetized swine [0.044 ml TKX (kg body
weight)21]. The remaining six swine were euthanized at 113 days p.i.
and necropsies were performed.

Swine were monitored daily for subjective signs of influenza infection
(e.g. lethargy, nasal discharge, coughing and dyspnoea) and objective
signs (e.g. body temperature) until 14 days p.i. Body weight was
measured weekly.

Serological assays. To determine the antibody response dynamics
in feral swine after IAV infection, we conducted a HI assay, using
0.5 % turkey red blood cells, as described previously (Sun et al., 2013).
ELISAs were performed by using an AI MultiS-Screen Ab Test kit
(IDEXX).

Growth kinetics of viruses in MDCK cells. To characterize
the growth kinetics of influenza strain A/swine/Texas/A01104013/
2012(H3N2), we inoculated MDCK cells with the virus at m.o.i.
0.001. After being incubated for 1 h at 37 uC, the inoculum was
removed and the cells were washed three times in PBS. The cells were
then incubated (37 uC in 5 % CO2) in Opti-MEM I (Gibco) con-
taining TPCK-treated trypsin (1.5 mg ml21). At 12, 24, 48 and 72 h
p.i., supernatant was collected from three of the 12 wells (1 ml per
well) and then titrated, by TCID50, in MDCK cells. TCID50 was cal-
culated by using the Reed–Muench method (Reed & Muench, 1938).

Data analyses. Student’s t-test was used to determine whether ser-
ological responses in the treatment group differed from responses in
sentinel swine. Specificity and sensitivity of ELISA kits were calcu-
lated. Results from HI assays were viewed as true positive and true
negative. We similarly measured the specificity and sensitivity of the
nasal swab sample-based qRT-PCR method for influenza diagnosis.
Cell culture results (TCID50) for nasal swab samples were used as
true positive and true negative. The data from the growth curve of the
WT virus and the isolates recovered from the sentinel swine were
analysed by using a one-way repeated-measure ANOVA followed by
Turkey and Duncan’s multiple comparison test.

The MiSeq sequence reads were matched to the reference genome by
using the Bowtie2 alignment program (Langmead & Salzberg, 2012).
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Single nucleotide polymorphisms were analysed by using VarScan
version 2.3.6 (Koboldt et al., 2012). A minimum of 10-fold mapping
coverage and a quality score of 30 were required for a given nucleotide
position. A minor variant was determined only if it was supported by
at least 20 % of reads at a given position.

Biosafety protocols for laboratory and animal experiments. The
laboratory analysis and inoculation trials in feral swine were carried
out under Biosafety Level 2 conditions, with investigators wearing
appropriate personal protective equipment, in compliance with the
Institutional Animal Care and Use Committee of US Department of
Agriculture-approved protocols, and Biosafety in Microbiological and
Biomedical Laboratories, as well as Risk Group Classification for
Infectious Agents.
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